Mutual Kernel Matrix Completion

نویسندگان

  • Rachelle Rivero
  • Richard Lemence
  • Tsuyoshi Kato
چکیده

With the huge influx of various data nowadays, extracting knowledge from them has become an interesting but tedious task among data scientists, particularly when the data come in heterogeneous form and have missing information. Many data completion techniques had been introduced, especially in the advent of kernel methods. However, among the many data completion techniques available in the literature, studies about mutually completing several incomplete kernel matrices have not been given much attention yet. In this paper, we present a new method, called Mutual Kernel Matrix Completion (MKMC) algorithm, that tackles this problem of mutually inferring the missing entries of multiple kernel matrices by combining the notions of data fusion and kernel matrix completion, applied on biological data sets to be used for classification task. We first introduced an objective function that will be minimized by exploiting the EM algorithm, which in turn results to an estimate of the missing entries of the kernel matrices involved. The completed kernel matrices are then combined to produce a model matrix that can be used to further improve the obtained estimates. An interesting result of our study is that the Estep and the M-step are given in closed form, which makes our algorithm efficient in terms of time and memory. After completion, the (completed) kernel matrices are then used to train an SVM classifier to test how well the relationships among the entries are preserved. Our empirical results show that the proposed algorithm bested the traditional completion techniques in preserving the relationships among the data points, and in accurately recovering the missing kernel matrix entries. By far, MKMC offers a promising solution to the problem of mutual estimation of a number of relevant incomplete kernel matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector machine training using matrix completion techniques

We combine interior-point methods and results from matrix completion theory in an approximate method for the large dense quadratic programming problems that arise in support vector machine training. The basic idea is to replace the dense kernel matrix with the maximum determinant positive definite completion of a subset of the entries of the kernel matrix. The resulting approximate kernel matri...

متن کامل

Memory-efficient Kernel PCA via Partial Matrix Sampling and Nonconvex Optimization: a Model-free Analysis of Local Minima

Kernel PCA is a widely used nonlinear dimension reduction technique in machine learning, but storing the kernel matrix is notoriously challenging when the sample size is large. Inspired by [YPCC16], where the idea of partial matrix sampling followed by nonconvex optimization is proposed for matrix completion and robust PCA, we apply a similar approach to memoryefficient Kernel PCA. In theory, w...

متن کامل

GPUFish: A Parallel Computing Framework for Matrix Completion from A Few Observations

The problem of recovering a data matrix from a small sample of observed entries, also known as matrix completion, arises in several real-world applications including recommender systems, sensor localization, and system identification. We introduce GPUFish, a parallel computing software framework for solving very large-scale matrix completion problems. GPUFish is modular, tunable, inherently par...

متن کامل

Algebraic Variety Models for High-Rank Matrix Completion

We consider a generalization of low-rank matrix completion to the case where the data belongs to an algebraic variety, i.e., each data point is a solution to a system of polynomial equations. In this case the original matrix is possibly high-rank, but it becomes low-rank after mapping each column to a higher dimensional space of monomial features. Many well-studied extensions of linear models, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 100-D  شماره 

صفحات  -

تاریخ انتشار 2017